What is shaft alignment?
Shaft alignment is the positioning of the rotational centers of two or more shafts such that they are co-linear when the machines are under normal operating conditions. Proper shaft alignment is not dictated by the total indicator reading (TIR) of the coupling hubs or the shafts, but rather by the proper centers of rotation of the shaft supporting members (the machine bearings).
There are two components of misalignment—angular and offset.
Offset misalignment, sometimes referred to as parallel misalignment, is the distance between the shaft centers of rotation measured at the plane of power transmission. This is typically measured at the coupling center. The units for this measurement are mils (where 1 mil = 0.001 in.)
Angular misalignment, sometimes referred to as "gap" or "face," is the difference in the slope of one shaft, usually the moveable machine, as compared to the slope of the shaft of the other machine, usually the stationary machine. The units for this measurement are comparable to the measurement of the slope of a roof (i.e., rise/run). In this case the rise is measured in mils and the run (distance along the shaft) is measured in inches. The units for angular misalignment are mils/1 in.